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Abstract
Superpositions of sound time-harmonic plane waves in an ideal liquid, defined
by the spherical harmonics, are considered. By way of illustration we present
unique families of orthonormal sound beams and localized fields. The obtained
solutions describe fields having a very small (about several wavelengths) and
clearly defined core region with maximum intensity of field oscillations. It
is shown that, as in the case of localized fields in an elastic solid, there exist
three families of localized sound fields in an ideal liquid (sound storms, whirls
and tornadoes). The main types of the sound fields presented are illustrated by
calculating fields, energy densities and energy fluxes.

PACS numbers: 62.30.+d, 43.20.+g, 02.30.Nw

1. Introduction

Scalar, vector and tensor plane-wave superpositions, defined by a given set of orthonormal
scalar functions on a two- or three-dimensional beam manifold B [1], are exact solutions
of wave equations in linear media and/or free space. It was shown [1] that among such
superpositions are included, in particular, orthonormal beams and other specific fields such
as three-dimensional standing waves, moving and evolving whirls. The proposed formalism
was initially developed for electromagnetic [1–3] and weak gravitational [3] fields and then
extended [4] to elastic and sound fields. In the previous two papers [5, 6], we applied it to
elastic fields in an isotropic medium, composed from longitudinal and transverse harmonic
plane waves (eigenwaves), respectively. In the concluding paper of the current series, we
consider sound fields in an ideal liquid.

As in the papers [5, 6], we confine here our illustrations to time-harmonic fields defined
by the spherical harmonics Y s

j as

W s
j (r, t) = exp(−iωt)

∫ 2π

0
dϕ

∫ θ2

0
exp[ir · k(θ, ϕ)]Y s

j (θ, ϕ)ν(θ, ϕ)W (θ, ϕ) sin θ dθ. (1)
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We use the beam state function [4] ν = ν(θ, ϕ) to obtain a complete system of orthonormal
sound beams formed from eigenwaves with unit wave normals given as

k̂ = k/k = er = sin θ ′(e1 cosϕ + e2 sin ϕ) + e3 cos θ ′ (2)

where er is the radial basis vector of the spherical coordinate system, (ei ) are the Cartesian basis
vectors, θ ′ = κ0θ and parameter κ0 satisfies the condition 0 < κ0 � 1. These eigenwaves
propagate in the solid angle � = 2π(1 − cos κ0θ2). For other types of sound field, ν is a
constant.

In the linear approximation, sound fields are described by the variations of pressure
p′ = p − p0 and the density �′ = � − �0, which are far less than the equilibrium values
p0 and �0. The velocity v of fluid particles is far less than the sound velocity c0. Although
a sound field in an ideal liquid is a typical example of scalar fields, when forming a set of
orthonormal beams, we must use the two-component vector amplitude [4, 7]

W (θ, ϕ) ≡
(
p′

v3

)
=

(
1

cos θ ′/(c0�0)

)
(3)

where v3 = e3 · v is the normal component of the velocity v of a fluid particle.
The outline of the paper is as follows. In section 2, we present two different types of

orthonormal sound beam. Three families of localized sound fields are treated in section 3.
Concluding remarks are made in section 4.

2. Orthonormal beams

2.1. Orthonormal beams with θ2 = π/2, κ0 = 1, and � = 2π

As with other physical fields (electromagnetic [1–3], weak gravitational [3] and elastic [5,6]),
the set of sound beams W s

j (1) with θ2 = π/2 and κ0 = 1 (θ ′ = θ ) consists of two
separate orthonormalized subsets defined by the spherical harmonics Y s

j with even and odd j ,
respectively. They are formed from eigenwaves propagating into a solid angle � = 2π . As
a consequence, the orthonormalizing function [4] ν = ν(θ, ϕ) reduces to a constant upon
substitution of the amplitude function W (3), and we obtain

p′ = ν3ei(sψ−ωt)I ssj [1] ν3 = 2

λ

√
�0c0NQ (4)

v3 = ν3

c0�0
ei(sψ−ωt)I ssj [cos] (5)

where k = 2π/λ = ω/c0, and NQ is the normalizing constant [4]. Hereafter, we extensively
use complex functions I smj [f ] = I smj [f ](r, γ ) and real functions J sm

jp [f ] = J sm
jp [f ](r, γ ),

related as

I smj [f ] = i|m|(J sm
j0 [f ] + iJ sm

j1 [f ]). (6)

These functions are defined by the spherical harmonic Y s
j = Y s

j (θ, ϕ), an integer m and a
scalar function f = f (θ). For any given f , they are functions of r and γ , where r , γ and ψ

are the spherical coordinates of the point with radius vector r. However, they are functionals
regarding f at fixed r and γ . The definitions and the properties of these functions are presented
in [1, 4]. When it cannot cause a misunderstanding, we omit the arguments (r, γ ).

Using the Euler equation [7], we find the velocity field

v = ν3

c0�0
ei(sψ−ωt)

{
eI ss−1

j [sin] + e∗I ss+1
j [sin] + e3I

ss
j [cos]

}
(7)
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where

e = (eR + ieA)/2 (8)

eR = e1 cosψ + e2 sinψ eA = −e1 sinψ + e2 cosψ (9)

r = ReR + ze3 R = r sin γ z = r cos γ. (10)

Here, R, ψ and z are the cylindrical coordinates of the point with radius vector r and eR and
eA are the radial and azimuthal basis vectors, respectively.

The time average sound energy density w3 and energy flux vector S are given by

w3 = w1 + w2 (11)

w1 = �0

4
|v|2 = w0

1∑
p=0

{
1

2

(
J ss−1
jp [sin]

)2
+

1

2

(
J ss+1
jp [sin]

)2
+

(
J ss
jp[cos]

)2
}

(12)

w2 = |p′|2
4�0c

2
0

= w0

1∑
p=0

(
J ss
jp[1]

)2
(13)

S = 1
2� (

p′v∗) = S0
(
S ′

ReR + S ′
AeA + S ′

Ne3
)

(14)

S ′
R =

1∑
p=0

(−1)pJ ss
j1−p[1]

{
β(−s)J ss−1

jp [sin] + β(s)J ss+1
jp [sin]

}
(15)

S ′
A =

1∑
p=0

J ss
jp[1]

{
β(s)J ss+1

jp [sin] − β(−s)J ss−1
jp [sin]

}
(16)

S ′
N = 2

1∑
p=0

J ss
jp[cos]J ss

jp[1] (17)

where

β(s) =
{

−1 (s = −1,−2, . . .)

1 (s = 0, 1, 2, . . .)
(18)

S0 = NQ/λ
2 and w0 = S0/c0. Both energy densities wi (i = 1, 2, 3) and cylindrical

components S ′
R, S ′

A and S ′
N of the normalized energy flux vector S′ = S/S0 are independent of

the azimuthal angle. All these parameters are symmetric functions of z. For the beams defined
by the spherical harmonics Y 0

3 and Y 1
3 , the energy density distribution in a meridional plane is

depicted in figure 1. The beam defined by the spherical harmonic Y 0
3 is more localized in the

radial directions than that defined by Y 1
3 . For s = 0, the maximum values of w3 are reached

exactly at the z axis at the points z′ = ±0.8. For s = 1, 2 and 3, peaks become lower and
move away from this axis.

The zonal spherical harmonic Y 0
j defines the sound beam with the velocity vectors lying

in the meridional planes as

v = ν3

c0�0
e−iωt

{
eRI

01
j [sin] + e3I

00
j [cos]

}
. (19)

2.2. Orthonormal beams with θ2 = π , κ0 � 1/2, and � � 2π

As in the case of the elastic beams [5, 6] with the same parameters θ2 = π/2 and κ0 = 1,
the sound fields presented above can be grouped into two separate sets of orthonormal beams,
defined by the spherical harmonics Y s

j with even and odd j , respectively.
To obtain a complete system of orthonormal beams [1, 4], defined by the whole set of

spherical harmonics, it is necessary to set θ2 = π and κ0 � 1/2. This gives a unified
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Figure 1. Normalized energy density w′ = w3/w0 of sound beams as a function of cylindrical
coordinates R′ = R/λ and z′ = z/λ; θ2 = π/2; κ0 = 1; � = 2π ; j = 3; (a) s = 0; (b) s = 1.

system of orthonormal sound beams formed from eigenwaves propagating in the solid angle
� = 2π(1 − cos κ0π) � 2π . In this case, the beam manifold is the unit sphere (B = S2); the
orthonormalizing function [4] is of the form

ν(θ) = 1

λ

√
2κ0�0c0NQ sin κ0θ

sin θ
. (20)

The divergence of beams depends on parameter κ0. The smaller is κ0, the smaller is the
solid angle � in which propagate beam-forming eigenwaves. At κ0 = 1/2 or κ0 ≈1/2, this
family of orthonormal sound beams has a pronounced core region. Beams with s �= 0 have
spiral energy fluxes in the core and resemble sound tornadoes. Figure 2 illustrates S ′

N for both
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Figure 2. Normal component S′
N of the normalized energy flux vector of sound beams as a function

of R′ = R/λ and z′ = z/λ; � = 2π ; j = 3; s = 1 (a) θ2 = π/2; κ0 = 1; (b) θ2 = π ; κ0 = 0.5.

types of orthonormal beam defined by the same spherical harmonic Y 1
3 . Although these beams

are composed of plane waves propagating in the same solid angle � = 2π , they have quite
different spatial distributions of energy densities and energy fluxes. In particular, in the plane
z = 0, as well as in any other cross-section, their main peaks of S ′

N are situated in different
domains.

3. Localized fields

As in the case of elastic fields [5, 6], localized time-harmonic sound fields (sound storms,
whirls and tornadoes) are described by W s

j (1) with π/2 � θ2 � π and κ0 = 1 (θ ′ = θ ). The
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amplitude function W (θ, ϕ) for these fields is determined by expression (3). As before, we
assume that the beam state function ν = ν(θ, ϕ) reduces to a constant.

3.1. Sound storms and whirls

Substitution of W (3) in equation (1) with θ2 = π results in the three-dimensional standing
wave with the sound pressure field

p′ = i|s|+p
√

2ν3ei(sψ−ωt)J ss
jp[1] (21)

and the velocity field

v = i|s|+q
√

2ν3

c0�0
ei(sψ−ωt)

{
e (−1)pβ(−s)J ss−1

jp [sin] + e∗(−1)pβ(s)J ss+1
jp [sin] + e3J

ss
jq[cos]

}
.

(22)

The time average energy densities w1, w2 and the sound energy flux vector field S = S0S
′
AeA

are given by
w1

w0
= (

J ss−1
jp [sin]

)2
+

(
J ss+1
jp [sin]

)2
+ 2

(
J ss
jq[cos]

)2
(23)

w2

w0
= 2

(
J ss
jp[1]

)2
(24)

S ′
A = 2J ss

jp[1]
{
β(s)J ss+1

jp [sin] − β(−s)J ss−1
jp [sin]

}
(25)

where p = 1 − q = 0 if j + |s| is even, and p = 1 − q = 1 if j + |s| is odd. The definitions
of w1, w2, and S are given by equations (12)–(14).

Sound storms with identically vanishing energy flux vector S are defined by the zonal
spherical harmonics (s = 0). Other spherical harmonics (s �= 0) specify the sound whirls
with azimuthal energy fluxes. The storm and the whirl, defined by the spherical harmonics
Y 0

3 and Y 2
3 , respectively, are illustrated in figure 3. The depicted parameters p′

n and S ′
A are

independent of ψ ; i.e., the fields are axially symmetrical with respect to the z axis. For the
sound storm under consideration, the intensity of pressure oscillations rapidly decreases in all
directions with major oscillation peaks located along the z axis. In the storm centre as well
as in the entire plane z = 0, this intensity is identically zero. The spatial distribution of the
azimuthal energy fluxes for the sound whirls and the whirls composed of longitudinal elastic
eigenwaves are similar in appearance (see figure 4 in part II [5] and figure 3 in this paper).

3.2. Tornadoes

To obtain a solution describing a localized sound field with spiral energy flux lines (sound
tornado), it is sufficient to set s �= 0 and π/2 < θ2 < π in equation (1). The sound tornadoes
have a pronounced core region and intensive azimuthal energy fluxes similar to those of the
corresponding whirls (see figure 3). However, the radial and the normal components of the
time average energy flux vector are not vanishing in this case (see figure 4) even though they
are much smaller than the azimuthal one. All these cylindrical components are independent of
the azimuthal angle ψ . As a result, the circular energy flux lines, typical for whirls, transform
into spiral lines with the step specified by the ratio between S ′

N and S ′
A and the changing radius

in domains with non-vanishing S ′
R (see also [3, 5]). This is why we refer to these unique

localized fields as sound tornadoes.
For the fields defined by the zonal spherical harmonics (s = 0), energy flux lines lie in

meridional planes.
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Figure 3. (a) Normalized instantaneous pressure field p′
n = (Rep′)/pn (pn = 2c0

√
�0w0) of a

sound storm as a function of R′ = R/λ and z′ = z/λ; θ2 = π ; κ0 = 1; � = 4π ; j = 3; s = 0;
ωt = π/4. (b) Azimuthal component S′

A of the normalized energy flux vector of a sound whirl as
a function of R′ and z′; θ2 = π ; κ0 = 1; � = 4π ; j = 3; s = 2.

4. Conclusion

In this paper, superpositions of sound time-harmonic plane waves in an ideal liquid, defined
by the spherical harmonics, are treated. Unique solutions of the wave equation, describing
families of orthonormal sound beams and specific localized fields are obtained. It is shown
that, as in the case of localized fields in an elastic solid, there exist two different types of sound
orthonormal beam, and three families of localized fields in an ideal liquid (sound storms, whirls
and tornadoes).
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Figure 4. (a) Radial S′
R and (b) normal S′

N components of the normalized energy flux vector of a
sound tornado as a function of R′ = R/λ and z′ = z/λ; θ2 = 5π/6; κ0 = 1; � = 2π(1 +

√
3/2);

j = 3; s = 2.

The solutions, obtained in the current series of papers, illustrate both similarities of and
distinctions between scalar (sound waves), vector (radial displacement vector for longitudinal
elastic waves, meridional and azimuthal displacement vectors for transverse elastic waves) and
tensor (deformation and stress tensors) plane-wave superpositions defined by the same set of
functions, such as the spherical harmonics. The elastic and sound fields presented in this series
are defined by equations of the form (1). They can be classified as follows.

(1) Orthonormal beams with θ1 = 0, θ2 = π/2, κ0 = 1 and � = 2π . They are formed from
plane waves propagating into a given half space. In this case, the beam manifold is the
northern hemisphere S2

N of the unit sphere S2 (B = S2
N).
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(2) Orthonormal beams with θ1 = 0, θ2 = π and κ0 � 1/2. For these beams, the beam
manifold is the unit sphere (B = S2), and � = 2π(1 − cos κ0π) � 2π .

(3) Three-dimensional standing waves with θ1 = 0, θ2 = π , κ0 = 1, B = S2 and � = 4π .
They are formed from plane waves of all possible propagation directions. The family of
these waves consists of storms, defined by the zonal spherical harmonics Y 0

j , and whirls
defined by the other Y s

j (s �= 0).
(4) Localized fields with θ1 = 0, π/2 < θ2 < π , κ0 = 1 and 2π < � < 4π . These fields

include tornadoes, which are defined by Y s
j with s �= 0.

As in the case of similar electromagnetic and weak gravitational fields [1–3], by integrating
the presented time-harmonic elastic and sound localized fields with respect to the frequency
as

W̆ s
j (r, t) = 1

2+ω

∫ ω+

ω−
W s

j (r, t) dω (26)

where +ω = (ω+ − ω−)/2 � (ω+ + ω−)/2, one can also obtain finite-energy evolving sound
storms, whirls and tornadoes.

In this series of papers, the elastic and sound fields are treated in the linear approximation.
In a weakly nonlinear medium, the presented solutions can be used as initial approximations
to solve the corresponding nonlinear wave equation by an iteration method. Alternatively, one
can use these solutions to compose an evolving converging wave that is sufficiently weak at
the initial stage to be treated in the linear approximation, i.e. at sufficiently small value of NQ.
This wave can be used to set initial conditions for a nonlinear equation describing the further
evolution of this converging wave.

To realize localized-wave effects, an array that has independently addressable elements
is required [8]. The effect of localized wave transmission has been verified with acoustic
experiments using ultrasound in water and independently addressable, finite-sized arrays by
Ziolkowski et al [9]. It seems plausible that similar arrays with sufficiently large number of
elements can be used to radiate the beams presented in this series of papers.
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